证明:arctanx+arccotx=2分之派。应该是用拉格朗日中值定理做的,可是我不知道怎么做?

 我来答
教育小百科达人
2021-07-26 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:463万
展开全部

证明如下:

(arctan x + arccot x)'=1/(1+x^2)-1/(1+x^2)=0

所以:arctan x + arccot x=C

arctan x + arccot x=arctan1 + arccot1

= π/4+π/4

=π/2

拉格朗日中值定理:

该定理给出了导函数连续的一个充分条件,必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。

我们知道,函数在某一点的极限不一定等于该点处的函数值;但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。

厦门君韦信息技术
2024-11-18 广告
厦门君韦信息技术有限公司成立于2015年,是一家致力于提供专业服务的电子元件分销商,具有业界先进的质量和可靠性、强大的搜索供应实力、专业的服务能力。厦门君韦主要深耕于图像识别技术研究与开发,同时助推于通信、工控、电力、汽车等行业客户的供应链... 点击进入详情页
本回答由厦门君韦信息技术提供
chongter
推荐于2018-02-05 · TA获得超过299个赞
知道答主
回答量:19
采纳率:0%
帮助的人:9.1万
展开全部
这里需要一个定理 如果函数f(x)在区间 I 上的导数恒为0,那么f(x)在区间 I 上是一个常数

证明如下
设 f(x)=arctanx+arccotx
对其求导 f`(x) = 1/(1+x^2)-1/(1+x^2)=0
所以f(x)=C C为一个常数
不妨设 x=1/2 f(1/2)= π/4+π/4=π/2
即 f(x)=π/2
证毕。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黄黄公主香又香
2018-10-15
知道答主
回答量:1
采纳率:0%
帮助的人:805
展开全部
这里需要一个定理 如果函数f(x)在区间 I 上的导数恒为0,那么f(x)在区间 I 上是一个常数
证明如下
设 f(x)=arctanx+arccotx
对其求导 f`(x) = 1/(1+x^2)-1/(1+x^2)=0
所以f(x)=C C为一个常数
不妨设 x=1 f(1)= π/4+π/4=π/2
即 f(x)=π/2
证毕。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一纸凉生a
2017-11-15
知道答主
回答量:4
采纳率:0%
帮助的人:2880
引用chongter的回答:
这里需要一个定理 如果函数f(x)在区间 I 上的导数恒为0,那么f(x)在区间 I 上是一个常数

证明如下
设 f(x)=arctanx+arccotx
对其求导 f`(x) = 1/(1+x^2)-1/(1+x^2)=0
所以f(x)=C C为一个常数
不妨设 x=1/2 f(1/2)= π/4+π/4=π/2
即 f(x)=π/2
证毕。
展开全部
这和拉格朗日中值定理有关系???
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式