已知sin(π/6+α)=4/5,α∈(π/3,5π/6),求cosα的值
3个回答
展开全部
π/3<α<5π/6,
π/2<π/6+α<π,则cos (π/6+α)<0
sin(π/6+α)=4/5, 则cos (π/6+α)=-3/5.
cosα=cos[(π/6+α)- π/6]
= cos (π/6+α) cosπ/6+ sin(π/6+α) sinπ/6
=-3/5*√3/2+4/5*1/2=(4-3√3)/10.
π/2<π/6+α<π,则cos (π/6+α)<0
sin(π/6+α)=4/5, 则cos (π/6+α)=-3/5.
cosα=cos[(π/6+α)- π/6]
= cos (π/6+α) cosπ/6+ sin(π/6+α) sinπ/6
=-3/5*√3/2+4/5*1/2=(4-3√3)/10.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(pi/6+a)=4/5,a 属于(p/3,5p/6),
则 cos(pi/6+a)= -根号[1-(4/5)^2] = -3/5
sin(pi/6+a)= sin(pi/6)cosa + cos(pi/6)sina = (cosa)/2 + (根号3)(sina)/2 = 4/5
cos(a) + (根号3)(sina) = 8/5 ------------(1)
cos(pi/6+a)= cos(pi/6)cosa - sin(pi/6)sina = (根号3)(cosa)/2 - (sina)/2 = 3/5
(根号3)(cosa) - sina = -6/5 ---------------(2)
(1) + (2)*根号3 4*cosa = 8/5 + 6(根号3)/5 = (8-6根号3)/5
cos a = (4 -3根号3)/10
则 cos(pi/6+a)= -根号[1-(4/5)^2] = -3/5
sin(pi/6+a)= sin(pi/6)cosa + cos(pi/6)sina = (cosa)/2 + (根号3)(sina)/2 = 4/5
cos(a) + (根号3)(sina) = 8/5 ------------(1)
cos(pi/6+a)= cos(pi/6)cosa - sin(pi/6)sina = (根号3)(cosa)/2 - (sina)/2 = 3/5
(根号3)(cosa) - sina = -6/5 ---------------(2)
(1) + (2)*根号3 4*cosa = 8/5 + 6(根号3)/5 = (8-6根号3)/5
cos a = (4 -3根号3)/10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询