设抛物线y^2=8x的焦点为F,倾斜角为锐角的直线l经过F,且与抛物线相交於A,B两点。若F是缐段A
设抛物线y^2=8x的焦点为F,倾斜角为锐角的直线l经过F,且与抛物线相交于A,B两点。若F是缐段AB的一个3等分点,则l的斜率为?...
设抛物线y^2=8x的焦点为F,倾斜角为锐角的直线l经过F,且与抛物线相交于A,B两点。若F是缐段AB的一个3等分点,则l的斜率为?
展开
2个回答
展开全部
设A(a²/8, a), B(b²/8, b)
y² = 8x = 2*4x, F(2, 0)
AB的方程: (y - b)/(a - b) = (x - b²/8)/(a²/8 - b²/8) = (8x - b²)/(a² - b²)
y - b = (8x - b²)/(a + b)
直线l经过F: -b = (16 - b²)/(a + b)
b = -16/a
B(32/a², -16/a)
F是缐段AB的一个3等分点, 则:
(1) AF = AB/3
(a - 0)/(a + 16/a) = 1/3
a = ±2√2
A(1, 2√2): 斜率k = (2√2 - 0)/(1 - 2) = -2√2 (<0, 舍去)
或A(1, -2√2): 斜率k = (-2√2 - 0)/(1 - 2) = 2√2
或
(2) AF = 2AB/3
(a - 0)/(a + 16/a) = 2/3
a = ±4√2
A(4, 4√2): 斜率k = (4√2 - 0)/(4 - 2) = 2√2
或A(4, -4√2): 斜率k = (4√2 - 0)/(4 - 2) = -2√2 (< 0, 舍去)
AB的斜率k = 2√2
y² = 8x = 2*4x, F(2, 0)
AB的方程: (y - b)/(a - b) = (x - b²/8)/(a²/8 - b²/8) = (8x - b²)/(a² - b²)
y - b = (8x - b²)/(a + b)
直线l经过F: -b = (16 - b²)/(a + b)
b = -16/a
B(32/a², -16/a)
F是缐段AB的一个3等分点, 则:
(1) AF = AB/3
(a - 0)/(a + 16/a) = 1/3
a = ±2√2
A(1, 2√2): 斜率k = (2√2 - 0)/(1 - 2) = -2√2 (<0, 舍去)
或A(1, -2√2): 斜率k = (-2√2 - 0)/(1 - 2) = 2√2
或
(2) AF = 2AB/3
(a - 0)/(a + 16/a) = 2/3
a = ±4√2
A(4, 4√2): 斜率k = (4√2 - 0)/(4 - 2) = 2√2
或A(4, -4√2): 斜率k = (4√2 - 0)/(4 - 2) = -2√2 (< 0, 舍去)
AB的斜率k = 2√2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询