求解一道高中数学题,圆锥曲线的
已知双曲线x²/a²-y²/b²=1(a>0,b>0)的左右焦点分别为F1(-c,0)和F2(c,0),若双曲线上存在一点P,使(...
已知双曲线x²/a²-y²/b²=1(a>0,b>0)的左右焦点分别为F1(-c,0)和F2(c,0),若双曲线上存在一点P,使(sin∠PF1F2)/(sin∠PF2F1)=a/c,求该双曲线的离心率的取值范围。
求详细过程啊!谢谢! 展开
求详细过程啊!谢谢! 展开
3个回答
展开全部
在△PF1F2中,由正弦定理有sin∠PF1F2/sin∠PF2F1=PF2/PF1,所以PF2/PF1=a/c
因为a<c,所以PF2<PF1,所以P点在双曲线的右支上。
过P点作x轴的平行线,分别交双曲线的左右准线于G、H,设P点坐标为(xo,yo),则xo≥a
PG=xo+(a²/c),PH=xo-(a²/c)
由双曲线的第二定义有
PF1=e•PG=e•[xo+(a²/c)]=exo+a
PF2=e•PH=e•[xo-(a²/c)]=exo-a
上面的式子代入PF2/PF1=a/c,得
c•(exo-a)=a•(exo+a)
解出xo=a(c+a)/(ec-ea)
代入xo≥a得a(c+a)/(ec-ea)≥a
化简这个不等式得(c+a)/(ec-ea)≥1
分子分母同除以a,并将c/a换成e,结合e>1整理得e²-2e-1≤0
解之得1<e≤1+√2。
因为a<c,所以PF2<PF1,所以P点在双曲线的右支上。
过P点作x轴的平行线,分别交双曲线的左右准线于G、H,设P点坐标为(xo,yo),则xo≥a
PG=xo+(a²/c),PH=xo-(a²/c)
由双曲线的第二定义有
PF1=e•PG=e•[xo+(a²/c)]=exo+a
PF2=e•PH=e•[xo-(a²/c)]=exo-a
上面的式子代入PF2/PF1=a/c,得
c•(exo-a)=a•(exo+a)
解出xo=a(c+a)/(ec-ea)
代入xo≥a得a(c+a)/(ec-ea)≥a
化简这个不等式得(c+a)/(ec-ea)≥1
分子分母同除以a,并将c/a换成e,结合e>1整理得e²-2e-1≤0
解之得1<e≤1+√2。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为(sin∠PF1F2)/(sin∠PF2F1)=a/c=PF2/PF1<1,
所以P点在双曲线的右支上,设PF2=x,则PF1=x+2a,(x>c-a),
所以,a/c=x/(x+2a),
即:x=2a/(c/a-1)>c-a,
取e=c/a,得:2>(e-1)^2,
即:1<e<1+√2
所以P点在双曲线的右支上,设PF2=x,则PF1=x+2a,(x>c-a),
所以,a/c=x/(x+2a),
即:x=2a/(c/a-1)>c-a,
取e=c/a,得:2>(e-1)^2,
即:1<e<1+√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询