设β1,β2是非其次线性方程组AX=b的两个不同解,a1,a2,a3是对应齐次线性方程组AX=0的基础解系

求AX=b通解A.1/2(β1+β2)+k1(a1-2a2+a3)+k2(-2a1+a2+a3)+k3(a1+a2-2a3)B.1/2(β1+β2)+k1(a1+a2)+... 求AX=b通解
A.1/2(β1+β2)+k1(a1-2a2+a3)+k2(-2a1+a2+a3)+k3(a1+a2-2a3)
B.1/2(β1+β2)+k1(a1+a2)+k2(a2+a3)+k3(a3+a1)
展开
CC花开的季节
2012-12-30 · 超过15用户采纳过TA的回答
知道答主
回答量:32
采纳率:0%
帮助的人:40.2万
展开全部
答案是B 因为他的后面部分是非齐次的基础解, a1+a2,a2+a3,a3+a1线性无关
证明a1+a2 a2+a3 a1+a3是线性无关的只要证明a1,a2,a3能够被他表示, 而他能被a1,a2,a3表示是显然的,他们相互表示只会a1,a2,a3和他等价,肯定秩是3咯。1 1 0 a1 =a1+a2
0 1 1 * a2 a2+a3所以只要前面的数字矩阵可逆,我们把它写在右边即可.
1 0 1 a3 a1+a3
可知左边矩阵的行列式为2,所以可逆,所以a1,a2,a3可以被其表示。
对于一般的题目给我k1*a1+k2*a2+k3*a3, K4*a1+k5*a2+k6*a3 ,k7*a1+k8*a2+k9*a3考虑
k1,k2....k9行列式不为0就行了
lry31383
高粉答主

2012-12-30 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
(a1-2a2+a3, -2a1+a2+a3, a1+a2-2a3) = (a1,a2,a3)K
K =
1 -2 1
-2 1 1
1 1 -2
因为 |K| = 0 (1,2行加到第3行)
所以 r(K)<3
所以 r(a1-2a2+a3, -2a1+a2+a3, a1+a2-2a3) = r(K) <3
所以 a1-2a2+a3, -2a1+a2+a3, a1+a2-2a3 线性相关
故 A 不对.
同理考虑B.
更多追问追答
追问
化到最后k变成
1 0 0
0 1 0
0 0 1 怎么回事?
追答
你是说选项B中的?
这说明K可逆, r(K)=3
来自:求助得到的回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式