已知函数f(x)=lnx+2x
(1)判断f(x)的单调性并用定义证明(2)设g(x)=ln((x+2)/(x-2)),若对任意X1∈(0,1),存在X2∈(k,k+1)(k∈N),使f(X1)<g(X...
(1)判断f(x)的单调性并用定义证明 (2)设g(x)=ln((x+2)/(x-2)),若对任意X1∈(0,1),存在X2∈(k,k+1)(k∈N),使f(X1)<g(X2),求实数k的最大值
为什么g(x)大于等于2后是那样算 展开
为什么g(x)大于等于2后是那样算 展开
1个回答
展开全部
1、设0<x1<x2
f(x1)-f(x2)=Inx1+2x1-Inx2-2x2=In(x1/x2)+2(x1-x2)
∵0<x1<x2
∴0<x1/x2<1,x1-x2<0
∴In(x1/x2)<0,2(x1-x2)<0
∴f(x1)-f(x2)<0
∴f(x1)<f(x2)
∵0<x1<x2
∴单增
2、由(1)知f(x)在(0,+∞)是增函数
∴f(x1)<f(1)=2
令g(x2)≥2,即In(x2+2)/(x2-2)≥2即x2+2≥e²(x2-2)
得x2≤(2e²+2)/(e²-1)=[2(e²-1)+4]/(e²-1)=2+4/(e²-1)
∵x2≤4/(e-1)∈(2,3)
∴kmax=2
不好意思,之前写漏了,在纸上好写一些,放心吧,绝对正确,这样就知道为什么了吧,对数性质
f(x1)-f(x2)=Inx1+2x1-Inx2-2x2=In(x1/x2)+2(x1-x2)
∵0<x1<x2
∴0<x1/x2<1,x1-x2<0
∴In(x1/x2)<0,2(x1-x2)<0
∴f(x1)-f(x2)<0
∴f(x1)<f(x2)
∵0<x1<x2
∴单增
2、由(1)知f(x)在(0,+∞)是增函数
∴f(x1)<f(1)=2
令g(x2)≥2,即In(x2+2)/(x2-2)≥2即x2+2≥e²(x2-2)
得x2≤(2e²+2)/(e²-1)=[2(e²-1)+4]/(e²-1)=2+4/(e²-1)
∵x2≤4/(e-1)∈(2,3)
∴kmax=2
不好意思,之前写漏了,在纸上好写一些,放心吧,绝对正确,这样就知道为什么了吧,对数性质
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询