9个回答
展开全部
因为-π/4<2x+π/4<3π/4
所以f(x)=sin(2x+π/4)的最大值为1,因为是开区间,没有最小值,
所以f(x)=sin(2x+π/4)的最大值为1,因为是开区间,没有最小值,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x属于(-π/4,π/4)
(2x+π/4)属于(-π/4,3π/4)
fx=sin(2x+π/4)在x=π/2处取最大值1
在x=-π/4处取最小值-√2/2
(2x+π/4)属于(-π/4,3π/4)
fx=sin(2x+π/4)在x=π/2处取最大值1
在x=-π/4处取最小值-√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-π/4<2x+π/4<3π/4
根据 正弦函数图像可知: -√2/2<f(x)≤1
x取不到-π/4,则取不到最小值~
根据 正弦函数图像可知: -√2/2<f(x)≤1
x取不到-π/4,则取不到最小值~
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
挡x=π/8时,有最大值1,无最小值,因为是开区间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询