求解分式的不定积分
2个回答
展开全部
你好
原式=
∫(x+2)/[(x-1)²+2]dx
令x=1+√2tanu,dx=√2sec ²udu,u=arctan[√2(x-1)/2]
√2tanu=x-1
2tan ²u=(x-1)²
(sec ²u-1)=(x-1)²/2
sec ²u=(x-1)²/2+1
1/cos²u=(x²-2x+3)/2
cos²u=2/(x²-2x+3)
|cosu|=√[2/(x²-2x+3)]
原式=∫(3+√2tanu)/(2sec ²u)*√2sec ²udu
=∫(3√2 /2+tanu)du
=3√2u /2-In|cosu|+C
=3√2/2*arctan[√2(x-1)/2]-In[√2/(x²-2x+3)]+C
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
原式=
∫(x+2)/[(x-1)²+2]dx
令x=1+√2tanu,dx=√2sec ²udu,u=arctan[√2(x-1)/2]
√2tanu=x-1
2tan ²u=(x-1)²
(sec ²u-1)=(x-1)²/2
sec ²u=(x-1)²/2+1
1/cos²u=(x²-2x+3)/2
cos²u=2/(x²-2x+3)
|cosu|=√[2/(x²-2x+3)]
原式=∫(3+√2tanu)/(2sec ²u)*√2sec ²udu
=∫(3√2 /2+tanu)du
=3√2u /2-In|cosu|+C
=3√2/2*arctan[√2(x-1)/2]-In[√2/(x²-2x+3)]+C
【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询