已知函数f(x)=(a-1/2)x^2+lnx (a∈R)若存在x∈[1,3],使f(x)<(x+1)lnx成立,求实数a的取值范围
3个回答
展开全部
(a-1/2)x^2+lnx <(x+1)lnx
移项得
(a-1/2)x^2-xlnx<0
x[(a-1/2)x-lnx]<0
x∈[1,3],所以x>0
(a-1/2)x-lnx<0
解得a<lnx/x+1/2
因为只需存在x∈[1,3],使不等式成立,所以只需求得lnx/x+1/2在[1,3]上的最大值即可。
对lnx/x求导得,(1-lnx)/x^2,令其等0得x=e。在[1,e]上,导数大于0,在[e,3]上,导数小于0.所以lnx/x在[1,3]上先增后减,那么最大值e点的值即可。
lne/e=1/e
所以a<1/e+1/2
移项得
(a-1/2)x^2-xlnx<0
x[(a-1/2)x-lnx]<0
x∈[1,3],所以x>0
(a-1/2)x-lnx<0
解得a<lnx/x+1/2
因为只需存在x∈[1,3],使不等式成立,所以只需求得lnx/x+1/2在[1,3]上的最大值即可。
对lnx/x求导得,(1-lnx)/x^2,令其等0得x=e。在[1,e]上,导数大于0,在[e,3]上,导数小于0.所以lnx/x在[1,3]上先增后减,那么最大值e点的值即可。
lne/e=1/e
所以a<1/e+1/2
展开全部
首先我觉得这道题应该证:f(x)≤(x+1)lnx
f(x)≤(x+1)lnx,即(a-1/2)x^2+lnx ≤(x+1)lnx成立 ∴(a-1/2)x^2≤xlnx≤xlnx
设M(X)=(a-1/2)x^2;N(X)=xlnx
N(X)的导数=lnx+1在x∈[1,3]上>0恒成立,所以单调递增
所以N(X)≥N(1)=0
若(a-1/2)x^2≤xlnx,即(a-1/2)x^2≤0,∴a≤1/2
f(x)≤(x+1)lnx,即(a-1/2)x^2+lnx ≤(x+1)lnx成立 ∴(a-1/2)x^2≤xlnx≤xlnx
设M(X)=(a-1/2)x^2;N(X)=xlnx
N(X)的导数=lnx+1在x∈[1,3]上>0恒成立,所以单调递增
所以N(X)≥N(1)=0
若(a-1/2)x^2≤xlnx,即(a-1/2)x^2≤0,∴a≤1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询