已知sin(π-x)=4/5,x∈(0,π/2),(1)求sin2x-cos²x/2的值。 10
1个回答
展开全部
sin(π-x)=4/5,x∈(0,π/2),
sinx=4/5,cosx= -3/5
sin2x-cos²x/2=(sinx+cosx)²-1/2(2cos²x/2-1)-3/2
=(sinx+cosx)²-1/2cosx-3/2
=(4/5 -3/5)²+1/2*3/5-3/2
= -29/25
(2)f(x)=5/6cosxsin2x-1/2cos2x
= -5/6*3/5sin2x-1/2cos2x
=-1/2sin2x-1/2cos2x
=-√2/2sin(2x-π/4)
2Kπ-π/2<=2x-π/4<=2Kπ+π/2
2Kπ-π/8<=x-<=2Kπ+3π/8
f(x)=5/6cosxsin2x-1/2cos2x的单调递增区间为:
2Kπ-π/8<=x-<=2Kπ+3π/8
sinx=4/5,cosx= -3/5
sin2x-cos²x/2=(sinx+cosx)²-1/2(2cos²x/2-1)-3/2
=(sinx+cosx)²-1/2cosx-3/2
=(4/5 -3/5)²+1/2*3/5-3/2
= -29/25
(2)f(x)=5/6cosxsin2x-1/2cos2x
= -5/6*3/5sin2x-1/2cos2x
=-1/2sin2x-1/2cos2x
=-√2/2sin(2x-π/4)
2Kπ-π/2<=2x-π/4<=2Kπ+π/2
2Kπ-π/8<=x-<=2Kπ+3π/8
f(x)=5/6cosxsin2x-1/2cos2x的单调递增区间为:
2Kπ-π/8<=x-<=2Kπ+3π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询