高考数学题目

已知数列《an》通向公式an=4^n-2^n,前n项和为Sn,则数列《2^n/Sn》前n项和Tn等于多少?... 已知数列《an》通向公式an=4^n - 2^n,前n项和为Sn,则数列《2^n / Sn》前n项和Tn等于多少? 展开
 我来答
长鱼语厹6w
2013-01-15
知道答主
回答量:28
采纳率:0%
帮助的人:8.8万
展开全部
解:
Sn=4(4^n-1)/(4-1)-2(2^n-1)/(2-1)
=[4^(n+1)-4)/3-[2^(n+1)-2]
=[4^(n+1)-4-3*2^(n+1)+6]/3
=[2^(n+1)*2^(n+1)-3*2^(n+1)+2]/3
=[2^(n+1)-1][2^(n+1)-2]/3
2^n/Sn
=3*2^n/[2^(n+1)-1][2^(n+1)-2]
=3/2*2^(n+1){1/[2^(n+1)-2]-1/[2^(n+1)-1]}
=3/2*2^(n+1)/[2^(n+1)-2]-3/2*2^(n+1)/[2^(n+1)-1]
=3/2*{1+2/[2^(n+1)-2]}-3/2*{1+1/[2^(n+1)-1]}
=3/2{2/[2^(n+1)-2]-1/[2^(n+1)-1]}
=3/2{1/(2^n-1)-1/[2^(n+1)-1]}
所以
Tn
=3/2{1-1/3+1/3-1/7+1/7-1/15+...+1/(2^n-1)-1/[2^(n+1)-1]}
=3/2{1-1/[2^(n+1)-1]}
=3/2-3/[2^(n+2)-2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式