在平面直角坐标系中,动点P,Q同时从原点出发,点P沿X轴正方向以每秒1个单位长度的速度运动,

在平面直角坐标系中,动点P,Q同时从原点出发,点P沿X轴正方向以每秒1个单位长度的速度运动,点O沿y轴正方向以每秒3个单位长度的速度运动。过点P做x轴的垂线,分别交y=x... 在平面直角坐标系中,动点P,Q同时从原点出发,点P沿X轴正方向以每秒1个单位长度的速度运动,点O沿y轴正方向以每秒3个单位长度的速度运动。过点P做x轴的垂线,分别交y=x+2,y=-x+1与C,D两点,分别以OQ,CD为边向又作正方形OQAB和正方形CDEF.
(1)当t为何值时,正方形OQAB与正方形CDEF的面积相等
(2)设正方形OQAB与正方形CDEF的重叠部分面积为S,求S与t的函数关系
(3)写出运动过程中使△AEF为等腰三角形的不同t值
第(3)问要具体过程
展开
qsmm
2013-01-18 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.8亿
展开全部
解:(1)设点P坐标为(t,0)
当xC=t时,yC=-t+1
当xD=t时,yD=t+2
∴CD=yD-yC=(t+2)-(-t+1)=2t+1
∵OQ=3t
∴当正方形OQAB与正方形CDEF的面积相等时,CD=OQ
∴2t+1=3t
解得t=1

(2)当点C在线段AQ上时,yQ=3t,yC=-t+1
∴3t=-t+1
解得t=¼

①当0<t≤¼时,S=0

②当¼<t≤1时,S=[(2t+1)-(t+2-3t)](3t-2t)=8t²-2t

③当t>1时,S=(t+2)(3t-2t)=2t²+4t
(3)t有四个值,分别为½、1\3、3+√6\6、3-√6\6
设t秒的时候P的坐标为(a,0),那么可以得出Q(0,3a)。
那么A点坐标为(3a,3a)。
这样把P点横坐标代入y=-x+1,y=x+2
可以得出C,D点的坐标分别是(a,-a+1)(a,a+2)
算出正方形CDEF边长CD为2a+1,那么DE=EF=CD=2a+1。
即可得出E,F点横坐标分别是a+2a+1=3a+1
分别得出完整坐标E(3a+1,a+2),F(3a+1,-a+1)
下面进行讨论AEF为等腰三角形,那么可得AE=AF或AE=EF或AF=EF
AE=AF即AE²=AF² 根据勾股定理就可以算出(1)²+(2a-2)²=(1)²+(4a-1)²
且a>0那么可以得出a=1/2,那么就得出
同样的方法计算另两种情况分别得出a=1/3和a=(3±√6)/6
那么就可以得出t=a=1/2或者a=1/3或a=(3±√6)/6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式