已知函数fx=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π

(1)求fx的单调递增区间(2)求fx在[π/8,3π/8]上的最大值和最小值... (1)求fx的单调递增区间
(2)求fx在[π/8,3π/8]上的最大值和最小值
展开
韩增民松
2014-04-09 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2713万
展开全部
已知函数fx=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π

(1)求fx的单调递增区间

(2)求fx在[π/8,3π/8]上的最大值和最小值

(1)解析:∵函数f(x)=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π

f(x)=4cosωxsin(ωx-π/6)+1=√3sin2ωx-cos2ωx=2sin(2ωx-π/6)

∴2ω=2π/π=2==>ω=1==> f(x)=2sin(2x-π/6)

单调递增区间:2kπ-π/2<=2x-π/6<=2kπ+π/2==>kπ-π/6<=x<=kπ+π/3

(2)解析:∵在[π/8,3π/8]上

最小值:f(π/8)=2sin(π/4-π/6)=(√6-√2)/2

最大值:f(π/3)=2sin(2π/3-π/6)=2

f(3π/8)=2sin(3π/4-π/6)=(√6+√2)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式