已知函数fx=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π
1个回答
展开全部
已知函数fx=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π
(1)求fx的单调递增区间
(2)求fx在[π/8,3π/8]上的最大值和最小值
(1)解析:∵函数f(x)=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π
f(x)=4cosωxsin(ωx-π/6)+1=√3sin2ωx-cos2ωx=2sin(2ωx-π/6)
∴2ω=2π/π=2==>ω=1==> f(x)=2sin(2x-π/6)
单调递增区间:2kπ-π/2<=2x-π/6<=2kπ+π/2==>kπ-π/6<=x<=kπ+π/3
(2)解析:∵在[π/8,3π/8]上
最小值:f(π/8)=2sin(π/4-π/6)=(√6-√2)/2
最大值:f(π/3)=2sin(2π/3-π/6)=2
f(3π/8)=2sin(3π/4-π/6)=(√6+√2)/2
(1)求fx的单调递增区间
(2)求fx在[π/8,3π/8]上的最大值和最小值
(1)解析:∵函数f(x)=4cosωxsin(ωx-π/6)+1(ω>0)的最小正周期是π
f(x)=4cosωxsin(ωx-π/6)+1=√3sin2ωx-cos2ωx=2sin(2ωx-π/6)
∴2ω=2π/π=2==>ω=1==> f(x)=2sin(2x-π/6)
单调递增区间:2kπ-π/2<=2x-π/6<=2kπ+π/2==>kπ-π/6<=x<=kπ+π/3
(2)解析:∵在[π/8,3π/8]上
最小值:f(π/8)=2sin(π/4-π/6)=(√6-√2)/2
最大值:f(π/3)=2sin(2π/3-π/6)=2
f(3π/8)=2sin(3π/4-π/6)=(√6+√2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询