已知对于任意正整数n都有a1+a2+...+an=n^3,则(1/a2-1)+(1/a3-1)+...+(1/a100-1)=_____
2个回答
展开全部
a1+a2+...+a(n-1)+an=n³ (1)
a1+a2+...+a(n-1)=(n-1)³ (2)
(1)-(2)
an=n³-(n-1)³
=[n-(n-1)][n²+n(n-1)+(n-1)²]
=3n²-3n+1
1/(an -1)=1/(3n²-3n+1-1)=1/(3n²-3n)=(1/3)×1/(n²-n)=(1/3)×1/[n(n-1)]=(1/3)[1/(n-1)-1/n]
1/(a2-1)+1/(a3-1)+...+1/(a100 -1)
=(1/3)[1/1 -1/2+1/2-1/3+...+1/(99)-1/100]
=(1/3)(1 -1/100)
=(1/3)(99)/100
=33/100
a1+a2+...+a(n-1)=(n-1)³ (2)
(1)-(2)
an=n³-(n-1)³
=[n-(n-1)][n²+n(n-1)+(n-1)²]
=3n²-3n+1
1/(an -1)=1/(3n²-3n+1-1)=1/(3n²-3n)=(1/3)×1/(n²-n)=(1/3)×1/[n(n-1)]=(1/3)[1/(n-1)-1/n]
1/(a2-1)+1/(a3-1)+...+1/(a100 -1)
=(1/3)[1/1 -1/2+1/2-1/3+...+1/(99)-1/100]
=(1/3)(1 -1/100)
=(1/3)(99)/100
=33/100
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询