问题补充:给定两个平面向量OA和OB,它们的夹角为120度,点C在以O为圆心的圆弧AB上运动,且O
问题补充:给定两个平面向量OA和OB,它们的夹角为120度,点C在以O为圆心的圆弧AB上运动,且OC=XOA+YOB(其中X,Y属于R),则x+y的最大值为...
问题补充:给定两个平面向量OA和OB,它们的夹角为120度,点C在以O为圆心的圆弧AB上运动,且OC=XOA+YOB(其中X,Y属于R),则x+y的 最大值为
展开
2014-10-06
展开全部
记oc与oa夹角为θ,设oa为直角坐标系的x轴。
则,oc=(cosθ,sinθ),oa=(1,0),ob=(-1/2,√3/2)
代入OC=XOA+YOB,有(cos θ,sin θ)=(x,0) + (-y/2,√3y/2)
联立方程组:x-y/2=cos θ √3y/2=sin θ
故x+y=2sin( θ +∏/6)≤2
所以x+y的最大值为2.
则,oc=(cosθ,sinθ),oa=(1,0),ob=(-1/2,√3/2)
代入OC=XOA+YOB,有(cos θ,sin θ)=(x,0) + (-y/2,√3y/2)
联立方程组:x-y/2=cos θ √3y/2=sin θ
故x+y=2sin( θ +∏/6)≤2
所以x+y的最大值为2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询