向量a1=(1,2,1)a2=(2,3,2)a3=(1,1,2)线性映射f:f(x,y,z)=A(x,y,z),f(a1)=a1,f(a2)=a1+a2,f(a3)=a2+2a3
1个回答
展开全部
设b=c1a1 + c2a2 + c3a3, 其中c1,c2,c3是参数,f(b)=c1*f(a1) + c2* f(a2) + c3*f(a3)
==>f(b)=(c1+c2)a1 + (c2+c3)a2 + 2c3a3 = λc1a1 + λc2a2 + λc3a3
==> c2 = (λ-1)c1 ; c3 = (λ-1)c2 ; (λ-2)c3 = 0;
当c3=0时,λ=1,带入后得c2=0,此时b=c1*a1,满足。
当λ=2时,c1=c2=c3,带入后满足,此时b=c(a1+a2+a3)
==>f(b)=(c1+c2)a1 + (c2+c3)a2 + 2c3a3 = λc1a1 + λc2a2 + λc3a3
==> c2 = (λ-1)c1 ; c3 = (λ-1)c2 ; (λ-2)c3 = 0;
当c3=0时,λ=1,带入后得c2=0,此时b=c1*a1,满足。
当λ=2时,c1=c2=c3,带入后满足,此时b=c(a1+a2+a3)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询