n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件

n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件.... n阶方阵A具有n个不同的特征值是A与对角阵相似的______条件. 展开
 我来答
呜拉我要暴瘦
2019-07-18 · TA获得超过2678个赞
知道答主
回答量:10
采纳率:0%
帮助的人:1412
展开全部

n阶方阵A具有n个不同的特征值是A与对角阵相似的充分条件

n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量,而特征值不同特征向量一定不同,由n阶方阵A具有n个不同的特征值可以推出A与对角阵相似,所以n阶方阵A具有n个不同的特征值是A与对角阵相似的充分条件。

但反之,则不一定成立。A与对角阵相似,特征值可能不同,也有可能出现相同的情况,只要满足A有n个线性无关的特征向量即可,所以n阶方阵A具有n个不同的特征值不是A与对角阵相似的必要条件

扩展资料

判断两个矩阵是否相似的辅助方法
1、判断特征值是否相等;
2、判断行列式是否相等;
3、判断迹是否相等;
4、判断秩是否相等。
以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。
(两个矩阵若相似于同一对角矩阵,这两个矩阵相似。)

参考资料来源:百度百科-特征值

参考资料来源:百度百科-相似矩阵

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
是你找到了我
高粉答主

2019-06-08 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43万
展开全部

n阶方阵A具有n个不同的特征值是A与对角阵相似的充分条件。

A具有n个不同的特征值,则A一定有n个线性无关的特征向量,根据“n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量”,因此A与对角阵相似。故n阶方阵A具有n个不同的特征值是A与对角阵相似的充分条件。

但反之,不一定成立。若A与对角阵相似,A可能有n个不同的特征值,也可能有相同的特征值,故n阶方阵A具有n个不同的特征值不是A与对角阵相似的必要条件。

扩展资料:

矩阵可对角化有两个充要条件:

1、矩阵有n个不同的特征向量;

2、特征向量重根的重数等于基础解系的个数。

对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。

若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。

参考资料来源:百度百科-特征值

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lgs00052
推荐于2017-11-27 · TA获得超过231个赞
知道答主
回答量:116
采纳率:50%
帮助的人:44.4万
展开全部
由于“n阶方阵A与对角矩阵相似的充要条件A有n个线性无关的特征向量”,而A具有n个不同的特征值,则
A一定有n个线性无关的特征向量
因此,n阶方阵A具有n个不同的特征值?A与对角矩阵相似
但反之,不一定成立
如:A=
?211
020
413
,A相似于
?1  
 2 
  2
,但A只有两个不同的特征值-1和2
从而n阶方阵A具有n个不同的特征值是A与对角阵相似的充分条件.
故填“充分”
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2021-01-26 · TA获得超过129个赞
知道小有建树答主
回答量:165
采纳率:100%
帮助的人:5.3万
展开全部
充分但不必要。
证明:非必要性:n阶单位矩阵E可对角化(或者,它本来就是对角矩阵,它与他自己相似),然而它的特征值都是1,或者说它的全部特征值是1。来自邱森的《高等代数》216页
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式