已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式a
已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足bn=log2(...
已知数列{an}的前n项和为Sn,满足Sn+2n=2an.(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;(Ⅱ)若数列{bn}满足bn=log2(an+2),求证:1b21+1b22+…+1b2n<1.
展开
证明:(I)由S
n+2n=2a
n得 S
n=2a
n-2n
当n∈N
*时,S
n=2a
n-2n,①
当n=1 时,S
1=2a
1-2,则a
1=2,
则当n≥2,n∈N
*时,S
n-1=2a
n-1-2(n-1).②
①-②,得a
n=2a
n-2a
n-1-2,即a
n=2a
n-1+2,∴a
n+2=2(a
n-1+2)
∴数列{a
n+2}是以a
1+2为首项,以2为公比的等比数列.
∴a
n+2=4?2
n-1,
∴a
n=2
n+1-2.
(Ⅱ)由b
n=log
2(a
n+2)=log22n+1=n+1,
∴
=
<=
?∴
++…+=(1?)+(?)+…+(?)=1?<1.
收起
为你推荐: