
解:(1)如图,∵在△ABC中,AB=AC=2,∠A=90°,
∴∠B=∠C=45°.
又∵∠1=180°-∠EPF-∠3,∠EPF=45°,∠C+∠2+∠3=180°,
∴∠1=135°-∠3,∠2=135°-∠3,
∴∠1=∠2,
∴△BPE∽△CFP.
(2)如图,∵在△ABC中,AB=AC=2,∠A=90°,P为BC的中点,
∴BP=CP=
.
由(1)知△BPE∽△CFP,则
=
,即
=
,
解得,CF=
.
则S
△PEF=S
△ABC-S
△BPE-S
△PFC-S
△AEF=
×2×2-
×
x×sinB-
×
×
×sinC-
×(2-x)×(2-
)
=2-
已赞过
已踩过<
收起
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
- 个人、企业类侵权投诉
- 违法有害信息,请在下方选择后提交
类别
- 色情低俗
- 涉嫌违法犯罪
- 时政信息不实
- 垃圾广告
- 低质灌水
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
我的现金
0
提现
下载百度知道APP
在APP端-任务中心提现
我知道了