如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向
如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).(1)若...
如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).(1)若GH交y轴于点M,则∠FOM=______°,OM=______;(2)将矩形EFGH沿y轴向上平移t个单位.①直线GH与x轴交于点D,若AD∥BO,求t的值;②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤42-2时,S与t之间的函数关系式.
展开
1个回答
展开全部
(1)如图所示:
由旋转可得:∠AOF=135°,又∠AOC=90°,
∴∠COF=∠AOF-∠AOC=45°,又∠MOC=90°,
∴∠FOM=45°,又OF∥HG,
∴∠OMH=∠FOM=45°,又∠H=90°,
∴△OHM为等腰直角三角形,
∴OH=HM=2,
则根据勾股定理得:OM=2
;
(2)①如图所示:连接AD,BO
∵AD∥BO,AB∥OD,
∴四边形ADOB为平行四边形,
∴DO=AB=2,
由平移可知:∠HEM=45°,
∴∠OMD=∠ODM=45°,
∴OM=OD=2,
由平移可知:EM=2
,
∴矩形EFGH平移的路程t=2
-2=2(
-1);
②分三种情况考虑:
(i)如图1所示,当0<t≤2时,重叠部分为等腰直角三角形,
此时OE=t,则重叠部分面积S=
t2;
(ii)如图2所示,当2<t≤2
时,重叠部分为直角梯形,
此时S=
[(t-2)+t]×2=2t-2;
(iii)如图3所示,当2
<t≤4
由旋转可得:∠AOF=135°,又∠AOC=90°,
∴∠COF=∠AOF-∠AOC=45°,又∠MOC=90°,
∴∠FOM=45°,又OF∥HG,
∴∠OMH=∠FOM=45°,又∠H=90°,
∴△OHM为等腰直角三角形,
∴OH=HM=2,
则根据勾股定理得:OM=2
2 |
(2)①如图所示:连接AD,BO
∵AD∥BO,AB∥OD,
∴四边形ADOB为平行四边形,
∴DO=AB=2,
由平移可知:∠HEM=45°,
∴∠OMD=∠ODM=45°,
∴OM=OD=2,
由平移可知:EM=2
2 |
∴矩形EFGH平移的路程t=2
2 |
2 |
②分三种情况考虑:
(i)如图1所示,当0<t≤2时,重叠部分为等腰直角三角形,
此时OE=t,则重叠部分面积S=
1 |
2 |
(ii)如图2所示,当2<t≤2
2 |
此时S=
1 |
2 |
(iii)如图3所示,当2
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|