求证:√2+√3+√5是无理数

david940408
2013-01-27 · TA获得超过5554个赞
知道大有可为答主
回答量:2964
采纳率:100%
帮助的人:1695万
展开全部
没想到这么难证……
假设√2+√3+√5是有理数,设为a,
那么√2+√3=a-√5,两边平方得:5+2√6=a^2+5-2√5a
所以2√6+2√5a=a^2,两边平方得:24+20a^2+8√30a=a^4,
所以√30是有理数,设√30=p/q((p,q)=1),
所以30q^2=p^2,由于30=2^1*3^1*5^1,q^2中2、3、5的次数为偶数,所以30q^2中2、3、5的次数为奇数,而p^2中2、3、5的次数必为偶数,矛盾
所以√2+√3+√5是无理数……
花式肯Cxd22
2013-01-27 · TA获得超过590个赞
知道答主
回答量:84
采纳率:0%
帮助的人:44.7万
展开全部
因为求:√2和√3和√5都是无理数,所以三个无理数相加也是无理数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式