在假设检验中,犯第一类错误的概率等于()。

A.∝B.βC.1-∝D.1-β... A.

B. β
C. 1-∝
D. 1-β
展开
书尽胸臆
高粉答主

2020-12-19 · 精读书,爱读书,分享书,书中自有颜如玉,书中自有黄金屋
书尽胸臆
采纳数:729 获赞数:58966

向TA提问 私信TA
展开全部

α。

一般地,假设检验可能犯的错误有如下两类:

①当假设H0正确时,小概率事件也有可能发生,此时我们会拒绝假设H0。因而犯了“弃真”的错误,称此为第一类错误,犯第一类错误的概率恰好就是“小概率事件”发生的概率α,即

P{拒绝H0/H0为真}=α

②当假设H0不正确,但一次抽样检验未发生不合理结果时,这时我们会接受H0,因而犯了“取伪”的错误,称此为第二类错误,记β为犯第二类错误的概率,即

P{接受H0/H0不真}=β

理论上,自然希望犯这两类错误的概率都很小。当样本容量n固定时,α、β不能同时都小,即α变小时,β就变大;而β变小时,α就变大。一般只有当样本容量n增大时,才有可能使两者变小。

在实际应用中,一般原则是:控制犯第一类错误的概率,即给定α,然后通过增大样本容量n来减小B。这种着重对第一类错误的概率α加以控制的假设检验称为显著性检验

扩展资料

注意事项

要进行统计假设的检验, 必须利用各种不同的判据, 即利用规则来选择。假设的采用与拒绝, 通常在判据的前件中应有某个数量指标(称为统计判据)。根据判据方式, 假设分为参数假设和非参数假设。

按照参数统计结论, 通常应提出被研究特征在总体中分布的具体形式, 因为在这种情况下, 统计学通常是以分布参数(平均值、方差、回归系数)的利用为依据的。非参数判据的优点是能把判据用于只靠名义级或次序级完成的特征度量上。

否定零假设的判据值总体能构成否定域。如果某一点能将否定域与接受零假设的区域划分开来, 这一点就称为临界点

参考资料来源:百度百科-假设检验

参考资料来源:百度百科-统计假设检验

秒懂百科
2020-12-26 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.3亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汴梁布衣
2013-01-28 · TA获得超过3292个赞
知道大有可为答主
回答量:1921
采纳率:87%
帮助的人:843万
展开全部
选A,∝应该是α
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式