已知a<b,且a^2-a-6=0,b^2-b-6=0,数列{an}{bn}满足a1=1,a2=-6a,a(n+1)=6an-9a(n-1)(n>=2),bn=a(n+1)-ban
(1)求证数列{bn}是等比数列(2)已知数列{cn}满足cn=an/3^n,试建立数列{cn}的递推公式(要求不含an或bn)(3)若数列{an}的前n项和为Sn,求S...
(1)求证数列{bn}是等比数列
(2)已知数列{cn}满足cn=an/3^n,试建立数列{cn}的递推公式(要求不含an或bn)
(3)若数列{an}的前n项和为Sn,求Sn 展开
(2)已知数列{cn}满足cn=an/3^n,试建立数列{cn}的递推公式(要求不含an或bn)
(3)若数列{an}的前n项和为Sn,求Sn 展开
展开全部
(1)
a^2-a-6=0
(a-3)(a+2)=0
a=3 or -2
b^2-b-6=0
b=3 or -2
a<b
=> a=-2 , b=3
a1=1, a2=-6a= 12
a(n+1)=6an-9a(n-1)
a(n+1)- 3an = 3(an-3a(n-1))
[a(n+1)- 3an]/(an-3a(n-1))=3
(an-3a(n-1))/(a2-3a1) = 3^(n-2)
an-3a(n-1) =3^n
an/3^n -a(n-1)/3^(n-1) =1
an/3^n - a1/3 = n-1
an/3^n=(n-1) + 1/3
= (1/3)(3n- 2)
an = 3^(n-1) .(3n-2)
bn=a(n+1)-ban
= 3^(n) .(3n+1) - 3^(n) .(3n-2)
= 3^(n+1)
{bn}是等比数列
cn = an/3^n
= (1/3)(3n-2)
an = 3^(n-1) .(3n-2)
= 3(n.3^(n-1)) - 2(3^(n-1))
consider
1+x+x^2+..+x^n = (x^(n+1) -1)/(x-1)
1+2x+...+nx^(n-1) = [(x^(n+1) -1)/(x-1)]'
= { nx^(n+1)- (n+1)x^n +1 }/(x-1)^2
put x=3
1.3^0+2.3^1+...+n.3^(n-1) = (1/4) { n3^(n+1)- (n+1)3^n +1 }
Sn = a1+a2+a3+..+an
= (3/4) { n3^(n+1)- (n+1)3^n +1 } - (3^n-1)
= (3/4)3^n {2n-5} +7/4
a^2-a-6=0
(a-3)(a+2)=0
a=3 or -2
b^2-b-6=0
b=3 or -2
a<b
=> a=-2 , b=3
a1=1, a2=-6a= 12
a(n+1)=6an-9a(n-1)
a(n+1)- 3an = 3(an-3a(n-1))
[a(n+1)- 3an]/(an-3a(n-1))=3
(an-3a(n-1))/(a2-3a1) = 3^(n-2)
an-3a(n-1) =3^n
an/3^n -a(n-1)/3^(n-1) =1
an/3^n - a1/3 = n-1
an/3^n=(n-1) + 1/3
= (1/3)(3n- 2)
an = 3^(n-1) .(3n-2)
bn=a(n+1)-ban
= 3^(n) .(3n+1) - 3^(n) .(3n-2)
= 3^(n+1)
{bn}是等比数列
cn = an/3^n
= (1/3)(3n-2)
an = 3^(n-1) .(3n-2)
= 3(n.3^(n-1)) - 2(3^(n-1))
consider
1+x+x^2+..+x^n = (x^(n+1) -1)/(x-1)
1+2x+...+nx^(n-1) = [(x^(n+1) -1)/(x-1)]'
= { nx^(n+1)- (n+1)x^n +1 }/(x-1)^2
put x=3
1.3^0+2.3^1+...+n.3^(n-1) = (1/4) { n3^(n+1)- (n+1)3^n +1 }
Sn = a1+a2+a3+..+an
= (3/4) { n3^(n+1)- (n+1)3^n +1 } - (3^n-1)
= (3/4)3^n {2n-5} +7/4
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询