请教一道微分方程题目。英文版的。200分。求牛人解答。。谢谢了。求过程详细

eulerw
2013-01-31 · TA获得超过9189个赞
知道大有可为答主
回答量:1366
采纳率:37%
帮助的人:719万
展开全部

(1) dP/(M-P)=Cdt,d(-ln(M-P))=d(C*t),

得-ln(M-P)=C*t+A0,得P(t)=M-A*e^(-C*t),A为常数。

如果P(0)=0,则A=M,则P(t)=M*(1-e^(-C*t))。




(2) dP/(M-P)=K*tanh(t/T)dt,d(-ln(M-P))=K*tanh(t/T)*dt=d(KT*ln(cosh(t/T))),

得-ln(M-P)=kT*ln(cosh(t/T))+A0,得P(t)=M-A*cosh(t/T)^(-KT),A为常数。

如果P(0)=0,则A=M,则P(t)=M*(1-cosh(t/T)^(-KT))。




M=100, C=1(初始增速最大,然后增速不停地减小)



M=100, K=1, T=1(因为tanh(0)=0,所以初始导数为0,后面由于tanh单调增从而增速开始变大,当靠近M后增速又开始变小)


iced_soda_zyx
2013-01-31 · TA获得超过1012个赞
知道小有建树答主
回答量:388
采纳率:0%
帮助的人:151万
展开全部
dP/dt=C[M-P]
将M-P除过去,两边积分,得到ln(P-M)=-ct,P(t)=e^(-ct)+M, C的单位就是秒的倒数,即s^-1。若P(0)=0,则P(t)=e^(-ct)-1
而后双曲正切的微分方程,求解可得P=A(cosh(t/T))^(-kT)+M.若P(0)=0,则A+M=0即可。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-01-31
展开全部
这个题目还好了 ,那个微分用y'代替,然后求出来。其实不用什么理解题目的。数学都是一个模子的。然后按照那里说的,当x=0时求值;当y(0)=0时求值
追问
能不能帮我写出来一下。。大神。。谢谢了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式