已知函数fx对任意x,y属于R,总有fx+fy=f(x+y),

且当x大于0时,fx小于0,f1=-2/3,求证函数fx在[-3,3]上的最大值和最小值... 且当x大于0时,fx小于0,f1=-2/3,求证函数fx在[-3,3]上的最大值
和最小值
展开
JZinUK
推荐于2017-11-25 · TA获得超过1188个赞
知道小有建树答主
回答量:215
采纳率:50%
帮助的人:224万
展开全部
f(1)=-2/3, and f(x)+fy=f(x+y)
f(2)=f(1)+f(1)=-4/3,
f(4)=f(2)+f(2)=-8/3,
f(6)=f(2)+f(4)=-12/3,

f(6)=f(3)+f(3)=-12/3,

f(3)=f(6)/2=-6/3=-2;

f(-3)+f(4)=f(1),
f(-3)=f(1)-f(4)=2,
f(0)=f(3)+f(-3)=0,
当x大于0时,fx小于0,函数对于点(0,0)对称,
或者说,假设x'>x,则x'-x为正,f(x'-x)<0,因此函数f(x)为单调递减。
因此函数f(x)的在【-3,3】区间内的最大值为f(-3),最小值为f(3)。

虽然这样看的话函数f(x)是线性的(一次函数),但题目本身没有说。下面的答案在一开始就给予函数是1次函数,求解过程存在瑕疵。

fx在[-3,3]上的最大值为f(-3)=2.

同理,最小值是f(3)=-2.
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
互联网的小白
2013-01-31 · TA获得超过178个赞
知道小有建树答主
回答量:247
采纳率:0%
帮助的人:126万
展开全部
设函数fx为y=ax+b 且fx+fy=f(x+y) 则a(x+y)+b=(ax+b)+(ay+b) 所以b=0
又因为f1=-2/3 所以函数式为y=-2/3x 得出函数在[-3,3]区间为减函数,当x=-3时有最大值f(-3)=2

最小值为f(3)=-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xywjp0
2013-01-31 · TA获得超过119个赞
知道答主
回答量:64
采纳率:0%
帮助的人:41.9万
展开全部
最大值为f(-3)=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式