设sn是数列an的前n项和,且a2=1/2,an+1=snsn+1,则sn
1个回答
展开全部
a2=1/2,a(n+1)=SnS(n+1) a2=S1S2
a2=a1(a1+a2)
1/2=a1(a1+1/2)
2a1^2+a1-1=0
(2a1-1)(a1+1)=0
a1=-1或a1=1/2(舍去)
a1=-1
a(n+1)=S(n+1)-Sn
S(n+1)-Sn=SnS(n+1)
等式两边除以SnS(n+1)得
1/S(n+1)-1/Sn=-1
{1/Sn}是等差数列
1/Sn=1/S1+(n-1)=1/a1+(n-1)=-1+(n-1)=n-2
Sn=1/(n-2)
a2=a1(a1+a2)
1/2=a1(a1+1/2)
2a1^2+a1-1=0
(2a1-1)(a1+1)=0
a1=-1或a1=1/2(舍去)
a1=-1
a(n+1)=S(n+1)-Sn
S(n+1)-Sn=SnS(n+1)
等式两边除以SnS(n+1)得
1/S(n+1)-1/Sn=-1
{1/Sn}是等差数列
1/Sn=1/S1+(n-1)=1/a1+(n-1)=-1+(n-1)=n-2
Sn=1/(n-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询