
证明f(x)=x/1+x²是定义在(-1,1)上的增函数
证明:在(-1,1)上任取x1,x2,设x1<x2f(x1)-f(x2)=x1/(1+x1²)-x2/(1+x2²)=[x1(1+x2²)-...
证明:在(-1,1)上任取x1,x2,设x1<x2
f(x1)-f(x2)=x1/(1+x1²)-x2/(1+x2²)
=[x1(1+x2²)-x2(1+x1²)]/(1+x1²)(1+x2²) ①
=[(1-x1x2)(x1-x2)]/[(1+x1²)(1+x2²)] ②
①怎样变到②啊,好心人帮帮忙 展开
f(x1)-f(x2)=x1/(1+x1²)-x2/(1+x2²)
=[x1(1+x2²)-x2(1+x1²)]/(1+x1²)(1+x2²) ①
=[(1-x1x2)(x1-x2)]/[(1+x1²)(1+x2²)] ②
①怎样变到②啊,好心人帮帮忙 展开
2个回答
展开全部
x1(1+x2²)-x2(1+x1²)
=x1+x1x2²-x2-x2x1²
=(x1-x2)- x1x2(x1-x2)
=(1-x1x2)(x1-x2)
=x1+x1x2²-x2-x2x1²
=(x1-x2)- x1x2(x1-x2)
=(1-x1x2)(x1-x2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询