4个回答
展开全部
用洛必达法则,分子分母求导数,其中分子为变上限积分求导,根据[∫f(t)dt]' (下限0上限u(x))=u'(x)*f(x),分子求导=(x^2)'(sin根号x^2)=2xsinx,所以原极限=lim2xsinx/3x^2=lin2sinx/3x=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:令√t=y,则:dt=2ydy;
又t∈[0,x^2],
∴y∈[0,x]
∴∫[0,x^2]sin√tdt=∫[0,x]2ysinydy
=2(-ycosy+siny]I[0,x]
=2(-xcosx+sinx)
∴lim(∫[0,x^2]sin√tdt/x^3=lim2(-xcosx+sinx)/x^3 ('0/0")
x→0 x→0
=2lim(-cosx+xsinx+cosx)/2x^2
x→0
=limsinx/x ("0/0")
x→0
=limcosx
x→0
=1
又t∈[0,x^2],
∴y∈[0,x]
∴∫[0,x^2]sin√tdt=∫[0,x]2ysinydy
=2(-ycosy+siny]I[0,x]
=2(-xcosx+sinx)
∴lim(∫[0,x^2]sin√tdt/x^3=lim2(-xcosx+sinx)/x^3 ('0/0")
x→0 x→0
=2lim(-cosx+xsinx+cosx)/2x^2
x→0
=limsinx/x ("0/0")
x→0
=limcosx
x→0
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询