
1/1*2*3+1/2*3*4+...+98*99*100= 5
2个回答
展开全部
consider
1/[(n+1)(n+2)(n+3)]
=(1/2){ 1/[(n+1)(n+2)] - 1/[(n+2)(n+3)] }
1/(1*2*3)+1/(2*3*4)+...+1/(98*99*100)
=(1/2) { [1/(1*2)-1/(2*3)] +[1/(2*3) -1/(3*4)]+...+[1/(98*99)-1/(99*100)] }
=(1/2)[ 1/2 - 1/9900 ]
=4949/19800
1/[(n+1)(n+2)(n+3)]
=(1/2){ 1/[(n+1)(n+2)] - 1/[(n+2)(n+3)] }
1/(1*2*3)+1/(2*3*4)+...+1/(98*99*100)
=(1/2) { [1/(1*2)-1/(2*3)] +[1/(2*3) -1/(3*4)]+...+[1/(98*99)-1/(99*100)] }
=(1/2)[ 1/2 - 1/9900 ]
=4949/19800
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询