
设三角形ABC的内角A,B,C的对边分别为a,b,c,已知b^2+c^2=a^2+√3bc
1个回答
展开全部
①
由余弦定理
b^2+c^2-2bccosA=a^2
a^2+√3bc-2bccosA=a^2
2bccosA=√3bc
cosA=√3/2
A=π/6
②
2sinBcosC-sin(B-C)
=2sinBcosC-(sinBcosC-sinCcosB)
=sinBcosC+sinCcosB
=sin(B+C)
[A+B+C=π B+C=π-A]
=sin(π-A)
=sinA
=1/2
由余弦定理
b^2+c^2-2bccosA=a^2
a^2+√3bc-2bccosA=a^2
2bccosA=√3bc
cosA=√3/2
A=π/6
②
2sinBcosC-sin(B-C)
=2sinBcosC-(sinBcosC-sinCcosB)
=sinBcosC+sinCcosB
=sin(B+C)
[A+B+C=π B+C=π-A]
=sin(π-A)
=sinA
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询