分部积分法,这道题谁当u ,谁当v?
1个回答
展开全部
先换元,令y=lnx,则x=e^y,dx=e^y*dy,y积分区域为0到pi/2
原积分=∫siny*e^(-2y)*e^y*dy
=∫siny*e^(-y)dy
=-∫e^(-y)d(cosy)
=-cosy*e^(-y)+∫cosyd[e^(-y)]
=-cosy*e^(-y)-∫cosy*e^(-y)dy
=-cosy*e^(-y)-∫e^(-y)d(siny)
=-cosy*e^(-y)-siny*e^(-y)+∫sinyd[e^(-y)]
=-cosy*e^(-y)-siny*e^(-y)-∫siny*e^(-y)dy (注:跟第二行的长得一样)
所以,原积分=-[cosy*e^(-y)+siny*e^(-y)]/2=-e^(-pi/2)/2+1/2
原积分=∫siny*e^(-2y)*e^y*dy
=∫siny*e^(-y)dy
=-∫e^(-y)d(cosy)
=-cosy*e^(-y)+∫cosyd[e^(-y)]
=-cosy*e^(-y)-∫cosy*e^(-y)dy
=-cosy*e^(-y)-∫e^(-y)d(siny)
=-cosy*e^(-y)-siny*e^(-y)+∫sinyd[e^(-y)]
=-cosy*e^(-y)-siny*e^(-y)-∫siny*e^(-y)dy (注:跟第二行的长得一样)
所以,原积分=-[cosy*e^(-y)+siny*e^(-y)]/2=-e^(-pi/2)/2+1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询