已知函数f(x)=(x+1)lnx. (1)求f(x)在x=1处的切线方程;

已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1-x)f(x),对任意x∈(0,1),g(x)<-2,求实数a的取值范... 已知函数f(x)=(x+1)lnx.(1)求f(x)在x=1处的切线方程;(2)设g(x)=1a(1-x)f(x),对任意x∈(0,1),g(x)<-2,求实数a的取值范围. 展开
370116
高赞答主

2013-02-22 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
解:(1)函数f(x)=(x+1)lnx定义域为(0,+∞)
∵f′(x)=lnx+(1+x)/x,
∴f′(1)=2,且切点为(1,0)
故f(x)在x=1处的切线方程y=2x-2.
(II)
由已知a≠0,
因为x∈(0,1),所以(1+x)/(1-x)lnx<0.
(1)当a<0时,f(x)>0.不合题意.
(2)当a>0时,x∈(0,1),由f(x)<-2,得lnx+2a(1-x)/(1+x)<0.
设h(x)=lnx+2a(1-x)/(1+x),则x∈(0,1),h(x)<0.
h′(x)=[x2+(2-4a)x+1]/[x(1+x)2].
设m(x)=x2+(2-4a)x+1,方程m(x)=0的判别式△=16a(a-1).
若a∈(0,1],△≤0,m(x)≥0,h′(x)≥0,h(x)在(0,1)上是增函数,
又h(1)=ln1+2a(1-1)/[1+1]=0,所以x∈(0,1),h(x)<0.…(10分)
若a∈(1,+∞),△>0,m(0)=1>0,m(1)=4(1-a)<0,
所以存在x0∈(0,1),使得m(x0)=0,
对任意x∈(x0,1),m(x)<0,h ′(x)<0,h(x)在(x0,1)上是减函数,
又因为h(1)=0,
所以x∈(x0,1),h(x)>0.不合题意.
综上,实数a的取值范围是(0,1].…(12分)
曾余益
2013-02-22 · TA获得超过1291个赞
知道小有建树答主
回答量:704
采纳率:0%
帮助的人:501万
展开全部
1>在x=1处的切线方程,切点为x=1,f(1)=0
对函数f(x)=(x+1)lnx求导,则有
导函数f¹(x)=lnx+(x+1)/x
将x=1带入方程得f¹(1)=2
切线方程得斜率为2 且过点(1.0)
y=2x-2
2》第二题的式子我 没看明白1a(1-x)f(x)是什么意思
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式