设函数f(x)=-xe^x求单调区间
展开全部
f(x)=-xe^x
f'(x)=-e^x-xe^x
=-e^x(1+x)
∵e^x>0
当f'(x)=-e^x(1+x)>0时
x<-1
∴在区间(-∞,-1)单调递增
当f'(x)=-e^x(1+x)<0时
x>-1
∴在区间(-1,+∞)单调递减
f'(x)=-e^x-xe^x
=-e^x(1+x)
∵e^x>0
当f'(x)=-e^x(1+x)>0时
x<-1
∴在区间(-∞,-1)单调递增
当f'(x)=-e^x(1+x)<0时
x>-1
∴在区间(-1,+∞)单调递减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解;
f '(x)=-e^x-xe^x=-(1+x)e^x
令f '(x)=0,得x=-1
①当x<-1时,f '(x)>0,f(x)为增函数
②当x>-1时,f '(x)<0,f(x)为减函数
故f(x)的单调增区间为(-∞,-1)
单调减区间为(-1,+∞)
f '(x)=-e^x-xe^x=-(1+x)e^x
令f '(x)=0,得x=-1
①当x<-1时,f '(x)>0,f(x)为增函数
②当x>-1时,f '(x)<0,f(x)为减函数
故f(x)的单调增区间为(-∞,-1)
单调减区间为(-1,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询