y=sinxcosx+sinx+cosx,x∈[0,π/2]的值域是
7个回答
展开全部
解:
令t=sinx+cosx,则:
因为:
sinx+cosx=√2sin(x+π/4),
因此:
t∈[1,√2]
又因为:
(sinx+cosx)²=t²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
则:
y=t+(t²-1)/2
=(1/2)(t+1)²-1
因此:当t=-1时,y有最小值:-1,但t取不到,因此:根据二次函数单调性,t>-1时为增函数,于是:
当t=1时有最小值:(1/2)(1+1)²-1=1
当t=√2时,y有最大值:(1/2)(√2+1)²-1=(1+2√2)/2
因此:
该函数的值域为:[1,(1+2√2)/2]
令t=sinx+cosx,则:
因为:
sinx+cosx=√2sin(x+π/4),
因此:
t∈[1,√2]
又因为:
(sinx+cosx)²=t²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
则:
y=t+(t²-1)/2
=(1/2)(t+1)²-1
因此:当t=-1时,y有最小值:-1,但t取不到,因此:根据二次函数单调性,t>-1时为增函数,于是:
当t=1时有最小值:(1/2)(1+1)²-1=1
当t=√2时,y有最大值:(1/2)(√2+1)²-1=(1+2√2)/2
因此:
该函数的值域为:[1,(1+2√2)/2]
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
y=sinx+cosx+sinxcosx
令sinx+cosx=T,(1)
由同角三角函数关系sinxcosx=[(sinx+cosx)^2-(sinx^2+cosx^2)]/2
把(1)式代入,得sinxcosx=(T^2-1)/2
所以y=T+(T^2-1)/2
整理得,y=1/2(T+1)^2-1
而sinx+cosx=√2sin(x+π/4)x∈[0,π/2]sinx+cosx=√2sin(x+π/4)∈[1,,√2]
所以y=1/2(T+1)^2-1 在T∈[1,,√2] 时,单调增加
当T=1时,y取得最小值 = 1
当T=√2时,y取得最大值 = 1/2+√2
值域[1,1/2+√2 ]
令sinx+cosx=T,(1)
由同角三角函数关系sinxcosx=[(sinx+cosx)^2-(sinx^2+cosx^2)]/2
把(1)式代入,得sinxcosx=(T^2-1)/2
所以y=T+(T^2-1)/2
整理得,y=1/2(T+1)^2-1
而sinx+cosx=√2sin(x+π/4)x∈[0,π/2]sinx+cosx=√2sin(x+π/4)∈[1,,√2]
所以y=1/2(T+1)^2-1 在T∈[1,,√2] 时,单调增加
当T=1时,y取得最小值 = 1
当T=√2时,y取得最大值 = 1/2+√2
值域[1,1/2+√2 ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=sinxcosx+sinx+cosx=0.5[(sinx+cosx)²-1]+(sinx+cosx)
令t=sinx+cosx则
t=√2sin(x+π/4)
∴t∈[1,√2]
y=0.5t²+t-0.5=0.5(t+1)²-1.5
当x=√2时y取得最大值√2+0.5
当x=1时y取得最小值1
∴y=sinxcosx+sinx+cosx,x∈[0,π/2]的值域为[1,√2+0.5]
令t=sinx+cosx则
t=√2sin(x+π/4)
∴t∈[1,√2]
y=0.5t²+t-0.5=0.5(t+1)²-1.5
当x=√2时y取得最大值√2+0.5
当x=1时y取得最小值1
∴y=sinxcosx+sinx+cosx,x∈[0,π/2]的值域为[1,√2+0.5]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:令t=sinx+cosx,则:
因为sinx+cosx=√2sin(x+π/4),
因此:t∈[1,√2]
又因为:(sinx+cosx)²=t²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
则:y=t+(t²-1)/2
=(1/2)(t+1)²-1
因此:当t=-1时,y有最小值:-1,但t取不到,因此:根据二次函数单调性,t>-1时为增函数,于是:当t=1时有最小值:(1/2)(1+1)²-1=1
当t=√2时,y有最大值:(1/2)(√2+1)²-1=(1+2√2)/2
因此:该函数的值域为:[1,(1+2√2)/2]
因为sinx+cosx=√2sin(x+π/4),
因此:t∈[1,√2]
又因为:(sinx+cosx)²=t²=1+2sinxcosx
∴sinxcosx=(t²-1)/2
则:y=t+(t²-1)/2
=(1/2)(t+1)²-1
因此:当t=-1时,y有最小值:-1,但t取不到,因此:根据二次函数单调性,t>-1时为增函数,于是:当t=1时有最小值:(1/2)(1+1)²-1=1
当t=√2时,y有最大值:(1/2)(√2+1)²-1=(1+2√2)/2
因此:该函数的值域为:[1,(1+2√2)/2]
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-02-25 · 知道合伙人教育行家
关注
展开全部
令 t=sinx+cox ,则 sinxcosx=(t^2-1)/2 ,
由 0<=x<=π/2 及 t=sinx+cosx=√2sin(x+π/4) 得 1<=t<=√2 ,
所以由 y=(t^2-1)/2+t=1/2*(t+1)^2-1 得 1<=y<=1/2+√2 ,
即值域为 [1,1/2+√2] 。
由 0<=x<=π/2 及 t=sinx+cosx=√2sin(x+π/4) 得 1<=t<=√2 ,
所以由 y=(t^2-1)/2+t=1/2*(t+1)^2-1 得 1<=y<=1/2+√2 ,
即值域为 [1,1/2+√2] 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询