1个回答
展开全部
1/n(n+2)=(1/2)[1/n-1/(n+2)]
1
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=(1/2)[1-(1/3)+(1/2)-(1/4)+(1/3)-(1/5)+……+1/n-1/(n+2)]
=(1/2)[(3/2)-3/(n+1)(n+2)]
2
(1/2)[(3/2)-3/(n+1)(n+2)]
=(3/4)-3/(n+1)(n+2)<3/4
1
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=(1/2)[1-(1/3)+(1/2)-(1/4)+(1/3)-(1/5)+……+1/n-1/(n+2)]
=(1/2)[(3/2)-3/(n+1)(n+2)]
2
(1/2)[(3/2)-3/(n+1)(n+2)]
=(3/4)-3/(n+1)(n+2)<3/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询