2个回答
展开全部
n为大于1的自然数
可以用数学归纳法来证:
(1)当n=2时
1/(2+1)+1/(2+2)=1/3+1/4=7/12=14/24>13/24成立
(2)假设当n=k时成立
即:1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)>13/24
那么当n=k+1时
1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)
=1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+2)+1/(2k+2)-2/(2k+2)=13/24
说明当n=k+1时也成立
由(1)(2)可知不等式对于大于1的自然数都成立
可以用数学归纳法来证:
(1)当n=2时
1/(2+1)+1/(2+2)=1/3+1/4=7/12=14/24>13/24成立
(2)假设当n=k时成立
即:1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)>13/24
那么当n=k+1时
1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)
=1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+2)+1/(2k+2)-2/(2k+2)=13/24
说明当n=k+1时也成立
由(1)(2)可知不等式对于大于1的自然数都成立
展开全部
数学归纳法证明,当n=1,左边=1/2>13/24成立,
假设n=k时也成立,即1/k+1+1/k+2+…+1/2k>13/24
当n=k+1时,左边=1/(k+1)+1+1/k+1+2+…+1/2(k+1)=1/k+2+1/k+3+…+1/2(k+1)>13/24-1/(k+1)+1/2(k+1)+1/(2k+1)
现在只要证明-1/(k+1)+1/2(k+1)+1/(2k+1)>0就好了。-1/(k+1)+1/2(k+1)+1/(2k+1)=-1/2(k+1)+1/(2k+1)》0是成立的,所以由归纳法知道对所有自然数都成立。
假设n=k时也成立,即1/k+1+1/k+2+…+1/2k>13/24
当n=k+1时,左边=1/(k+1)+1+1/k+1+2+…+1/2(k+1)=1/k+2+1/k+3+…+1/2(k+1)>13/24-1/(k+1)+1/2(k+1)+1/(2k+1)
现在只要证明-1/(k+1)+1/2(k+1)+1/(2k+1)>0就好了。-1/(k+1)+1/2(k+1)+1/(2k+1)=-1/2(k+1)+1/(2k+1)》0是成立的,所以由归纳法知道对所有自然数都成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询