如何证明方程x^3+px+q=0(p>0)有且只有一个实根(详细过程)

低调侃大山
2013-03-01 · 家事,国事,天下事,关注所有事。
低调侃大山
采纳数:67731 获赞数:374591

向TA提问 私信TA
展开全部
1.

设f(x)=x^3+px+q
f'(x)=x²+p
因为x²>=0 p>0
即f'(x)>0
所以
f(x)在定义R内单调递增
即方程x^3+px+q=0(p>0)最多一个实根;
2.
f(x)=x^3+px+q
因为
lim(x→-∞)f(x)=lim(x→-∞)【x^3+px+q】=-∞

lim(x→+∞)f(x)=lim(x→+∞)【x^3+px+q】=+∞
由零点定理,知
方程至少有一个实根
所以
由1,2,得
方程x^3+px+q=0(p>0)有且只有一个实根。
更多追问追答
追问
能不能直接
∵f(x)在定义R内单调递增
∴方程x^3+px+q=0(p>0)有且只有一个实根????
追答
不可以

y=e的x次方
根本没有0点。
笑年1977
2013-03-01 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
设g(x)=x^3+px+q
g'(x)=x^2+p
∵x^2>=0 p>0
∴g'(x)>0
∴g(x)在定义R内单调递增
∴方程x^3+px+q=0(p>0)有且只有一个实根
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式