如何证明方程x^3+px+q=0(p>0)有且只有一个实根(详细过程)
2个回答
展开全部
1.
设f(x)=x^3+px+q
f'(x)=x²+p
因为x²>=0 p>0
即f'(x)>0
所以
f(x)在定义R内单调递增
即方程x^3+px+q=0(p>0)最多一个实根;
2.
f(x)=x^3+px+q
因为
lim(x→-∞)f(x)=lim(x→-∞)【x^3+px+q】=-∞
而
lim(x→+∞)f(x)=lim(x→+∞)【x^3+px+q】=+∞
由零点定理,知
方程至少有一个实根
所以
由1,2,得
方程x^3+px+q=0(p>0)有且只有一个实根。
设f(x)=x^3+px+q
f'(x)=x²+p
因为x²>=0 p>0
即f'(x)>0
所以
f(x)在定义R内单调递增
即方程x^3+px+q=0(p>0)最多一个实根;
2.
f(x)=x^3+px+q
因为
lim(x→-∞)f(x)=lim(x→-∞)【x^3+px+q】=-∞
而
lim(x→+∞)f(x)=lim(x→+∞)【x^3+px+q】=+∞
由零点定理,知
方程至少有一个实根
所以
由1,2,得
方程x^3+px+q=0(p>0)有且只有一个实根。
更多追问追答
追问
能不能直接
∵f(x)在定义R内单调递增
∴方程x^3+px+q=0(p>0)有且只有一个实根????
追答
不可以
如
y=e的x次方
根本没有0点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |