函数一样,求证明㏑(n+1)>1/3+1/5+1/7+……+1/(2n+1),n∈N+
2个回答
展开全部
用数归;
n=1,
n=k时,有㏑(k+1)>1/3+1/5+1/7+……+1/(2k+1);
n=k+1时,则㏑(k+2)—【1/3+1/5+1/7+……+1/(2k+1)+1/(2k+3)】
>㏑(k+2)—【㏑(k+1)+1/(2k+3)】
>㏑(k+2)/(k+1)—1/(2k+3)
>㏑1+1/(k+1) — 1/(2k+3)
>1/(k+1)/[1+1+/(k+1)] — 1/(2k+3)
=1/(k+2)— 1/(2k+3)>0.,
既当n=k+1时也成立;
.
.
n=1,
n=k时,有㏑(k+1)>1/3+1/5+1/7+……+1/(2k+1);
n=k+1时,则㏑(k+2)—【1/3+1/5+1/7+……+1/(2k+1)+1/(2k+3)】
>㏑(k+2)—【㏑(k+1)+1/(2k+3)】
>㏑(k+2)/(k+1)—1/(2k+3)
>㏑1+1/(k+1) — 1/(2k+3)
>1/(k+1)/[1+1+/(k+1)] — 1/(2k+3)
=1/(k+2)— 1/(2k+3)>0.,
既当n=k+1时也成立;
.
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询