初三数学题一道 http://www.jyeoo.com/math/ques/detail/e744b94b-a6d6-40ca-ba46-d7977cff6685
推荐于2016-12-02
展开全部
解:①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,
∵AD平分∠BAC
∴∠EAD=∠DAC,
∴∠AED=∠ADC.
故本选项正确;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正确;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=12.
故本选项正确;
④连接DM,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.
故本选项正确.
综上所述,①③④正确,共有3个.
故选C.
∵AD平分∠BAC
∴∠EAD=∠DAC,
∴∠AED=∠ADC.
故本选项正确;
②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故不一定正确;
③由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC•BE=BD•DC=12.
故本选项正确;
④连接DM,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,∴3BF=4AC.
故本选项正确.
综上所述,①③④正确,共有3个.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |