已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n
展开全部
用数学归纳法证明
n=2时
(1+a1)(1+a2)=1+a1a2+a1+a2=2+a1+a2>=2+2√a1a2=4
命题成立
假设n=k时命题成立
n=k+1时 由于a1a2a3…稿信梁a(k+1)=1
所以键运必存在ai,aj ai>=1>=aj
不妨设a1>=1>坦液=a2
将a1*a2看成1个数 就成了n=k的情况
(1+a1a2)(1+a3).(1+a(k+1))>=2^(k)
只需要证明(1+a1)(1+a2)>=2(1+a1a2)就可以了
化简 a1+a2-1-a1a2=(a1-1)(1-a2)>0
故(1+a1)(1+a2)(1+a3).(1+a(k+1))>=2^(k+1)
证毕
n=2时
(1+a1)(1+a2)=1+a1a2+a1+a2=2+a1+a2>=2+2√a1a2=4
命题成立
假设n=k时命题成立
n=k+1时 由于a1a2a3…稿信梁a(k+1)=1
所以键运必存在ai,aj ai>=1>=aj
不妨设a1>=1>坦液=a2
将a1*a2看成1个数 就成了n=k的情况
(1+a1a2)(1+a3).(1+a(k+1))>=2^(k)
只需要证明(1+a1)(1+a2)>=2(1+a1a2)就可以了
化简 a1+a2-1-a1a2=(a1-1)(1-a2)>0
故(1+a1)(1+a2)(1+a3).(1+a(k+1))>=2^(k+1)
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询