已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n

 我来答
户如乐9318
2022-08-27 · TA获得超过6657个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:139万
展开全部
用数学归纳法证明
n=2时
(1+a1)(1+a2)=1+a1a2+a1+a2=2+a1+a2>=2+2√a1a2=4
命题成立
假设n=k时命题成立
n=k+1时 由于a1a2a3…a(k+1)=1
所以必存在ai,aj ai>=1>=aj
不妨设a1>=1>=a2
将a1*a2看成1个数 就成了n=k的情况
(1+a1a2)(1+a3).(1+a(k+1))>=2^(k)
只需要证明(1+a1)(1+a2)>=2(1+a1a2)就可以了
化简 a1+a2-1-a1a2=(a1-1)(1-a2)>0
故(1+a1)(1+a2)(1+a3).(1+a(k+1))>=2^(k+1)
证毕
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式