已知a、b是整数,且满足a-b是质数,ab是完全平方数,若a≥2011,求a的最小值

如题,我在网上找到了答案,不过看不懂,我把答案发上来:答案1a-b=p(质数),由辗转相除法的原理可得出结论:要么p是a,b的公约数,要么a,b互质。如果p是a,b的公约... 如题,我在网上找到了答案,不过看不懂,我把答案发上来:
答案1

a-b=p(质数),由辗转相除法的原理可得出结论:要么p是a,b的公约数,要么a,b互质。
如果p是a,b的公约数:令b=np,则a=b+p=(n+1)p,ab=n(n+1)p^2,n(n+1)不可能是完全平方数
如果a,b互质:由ab是完全平方数,可知,a和b都是完全平方数,令a是m的平方,b是n的平方,则a-b=m^2-n^2=(m+n)(m-n),a-b是质数,所以m-n=1,m+n=p,sqrt(2011)>44,而45+44=89是一个素数,所以,a最小是45^2=2025,b只能是44^2=1936

答案2
假设A = (M+1)P、B = MP,A-B = P是素数的情况时,因M+1、M互质。
A*B = PM(M+1) 不可能为完全平方数。
因此由题意,A、B应分别是完全平方数、A-B为一素数。
A = M²
B = N²
M、N互质
A - B = (M+N)(M-N)=质数=M+N
则M-N = 1

这两个答案最终求出结果是正确的,但是我对其中2个有疑问,答案1中,为什么辗转相除法能得到A,B各是完全平方数呢 ,答案2的第一条,A-B = P是素数的情况时,因M+1、M互质是为何成立 还有一点,a-b=m^2-n^2=(m+n)(m-n),a-b是质数,所以m-n=1 这个我也不懂,a-b是质数,为什么m=n就是1呢,求解释,感激不尽
展开
 我来答
changyaxun
2013-03-11
知道答主
回答量:13
采纳率:0%
帮助的人:23.2万
展开全部
楼主提出的问题都是对质数理解的不足引起的。
关于答案1,本身说的很清楚。楼主提出的疑问完全由于对定义的不理解。要解释必须从头来说~~~还是楼主明确概念后自己看吧。
答案2.
解释1~~~~相邻两整数互质(若不是这样的,则他们的差应该能被他们的最大公约数整除,而他们的差为1,所以他们的最大公约数为1,即互质)
解释2~~~~~~~a-b已经是质数了。质数写成两个整数的乘积,只可能是1和他本身~~~~m+n不可能是1,只能是m-n是1了。
百度网友8f4e02d
2013-03-09
知道答主
回答量:20
采纳率:0%
帮助的人:5.3万
展开全部
你需要好好理解一下定义
追问
辗转相除法不是用来弄余数的吗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式