已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),求F(X)的周期
展开全部
解答:
f(x)是奇函数
∴f(-x)=-f(x)
由f(x)=f(3/2-x)可得
f(x+3/2)=f(3/2-(x+3/2))=f(-x)=-f(x)
∴f(x+3/2+3/2)=-f(x+3/2)
=-[-f(x)]=f(x)
即f(x+3)=f(x),
所以函数f(x)的周期为3
不懂追问!
f(x)是奇函数
∴f(-x)=-f(x)
由f(x)=f(3/2-x)可得
f(x+3/2)=f(3/2-(x+3/2))=f(-x)=-f(x)
∴f(x+3/2+3/2)=-f(x+3/2)
=-[-f(x)]=f(x)
即f(x+3)=f(x),
所以函数f(x)的周期为3
不懂追问!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an + S(n-1) = Sn = 2an+n
an = S(n-1) - n
a1 = -1, Sn = -1
a2 = S1 - 2 = -3, S2 = - 4
a3 = S2 - 3 = -7, S3 = -11
a4 = S3 - 4 = -15, S4 = -26
a5 = S4 - 5 = -31, S5 = -57
a6 = S5 - 6 = -63
f(3/2-x) = f(x)
f(x) = f(3/2-x) = -f(x - 3/2) = - f(3-x) = f(x -3)
所以同期为3
an = S(n-1) - n
a1 = -1, Sn = -1
a2 = S1 - 2 = -3, S2 = - 4
a3 = S2 - 3 = -7, S3 = -11
a4 = S3 - 4 = -15, S4 = -26
a5 = S4 - 5 = -31, S5 = -57
a6 = S5 - 6 = -63
f(3/2-x) = f(x)
f(x) = f(3/2-x) = -f(x - 3/2) = - f(3-x) = f(x -3)
所以同期为3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3/2-x+x=3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询