计算不定积分∫xarctanxdx,求详细解答有图的
1个回答
展开全部
∫xarctanxdx
=1/2∫arctanx*2xdx
=1/2∫arctanxdx^2
=1/2xarctanx-1/2∫x^2*1/(x^2+1)dx
=1/2xarctanx-1/2∫(x^2+1-1)dx/(x^2+1)
=1/2xarctanx-1/2∫dx+1/2∫dx/(x^2+1)
=1/2xarctanx-x/2+1/2*arctanx+C
=1/2*(xarctanx-x+arctanx)+C
=1/2∫arctanx*2xdx
=1/2∫arctanxdx^2
=1/2xarctanx-1/2∫x^2*1/(x^2+1)dx
=1/2xarctanx-1/2∫(x^2+1-1)dx/(x^2+1)
=1/2xarctanx-1/2∫dx+1/2∫dx/(x^2+1)
=1/2xarctanx-x/2+1/2*arctanx+C
=1/2*(xarctanx-x+arctanx)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |