已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3). (1)求抛物线的解析式; 15

(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P... (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;
(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
!!!!!!!!!!!!第三问有其他方法吗?除了面积法,,相似可以吗?
展开
 我来答
百度网友b20b593
高粉答主

2013-03-18 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:3.3万
采纳率:97%
帮助的人:2.4亿
展开全部
解:(1)将A(3,0)、B(0,3)代入y=ax²+2x+c,得
{9a+6+c=0
c=3
解得{a=-1
c=3
∴抛物线的解析式为y=-x²+2x+3
(2)∵y=-x²+2x+3=-(x-1)²+4
∴抛物线的对称轴为直线X=1
∵抛物线y=-x²+2x+3与X轴交于点A(3,0),由对称性,可得C(-1,0)
连接AB,则AB于抛物线的对称轴直线X=1的交点就是所求的D点。
设直线AB的解析式为y=kx+b,将A(3,0)、B(0,3)代入,得
{3k+b=0
b=3
解得:{k=-1
b=3
∴直线AB的解析式是y=-x+3
令X=1,得y=-1+3=2
∴D(1,2)
(3)设在第一象限的抛物线上存在点P(m,n),则n= -m²+2m+3
连接OP,
则S△ABP=S△PBO+S△PAO-S△AOB
=½×3m+½×3×(-m²+2m+3)-½×3×3
=(3/2)m-(3/2)m²+3m+(9/2)-(9/2)
=-(3/2)m²+(9/2)m
=(-3/2)[m-(3/2)]²+(27/8)
∴当m=3/2时,n= -m²+2m+3=15/4,
即存在点P(3/2,15/4),使S△ABP有最大值。
很高兴为您解答,祝你学习进步!【学习宝典】团队为您答题。
有不明白的可以追问!如果您认可我的回答。
请点击下面的【选为满意回答】按钮,谢谢!
追问
第三问有其他方法吗?
追答
没想出来
百度网友da6c2b5
2013-05-20 · TA获得超过160个赞
知道答主
回答量:67
采纳率:100%
帮助的人:24.1万
展开全部
我们老师第三问也是这么讲的,已经很简便了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式