数列An的前n项和为Sn,并且Sn等于n²-4n,设Bn=An÷(2的n次幂),求数列Bn的前n项和
2个回答
展开全部
Sn=n²-4n
=>a1=S1=-3
an=Sn-S(n-1)=2n-5
=>{an}是以-3为首项,-5为公差的等差数列。
=>bn=(2n-5)÷2^n
=>bn的前n项和
Bn=a1/2+a2/2^2+a3/2^3+....+an/2^n..........(1)
2Bn=a1+a2/2+a3/2^2+....+an/2^(n-1)..........(2)
(2)-(1)得
Bn=a1-5(1/2+1/2^2+...+1/2^(n-1)=-3-5[(1/2)(1-(1/2)^(n-1))]/[1-1/2)]=5/2^(n-1)]-8
=>a1=S1=-3
an=Sn-S(n-1)=2n-5
=>{an}是以-3为首项,-5为公差的等差数列。
=>bn=(2n-5)÷2^n
=>bn的前n项和
Bn=a1/2+a2/2^2+a3/2^3+....+an/2^n..........(1)
2Bn=a1+a2/2+a3/2^2+....+an/2^(n-1)..........(2)
(2)-(1)得
Bn=a1-5(1/2+1/2^2+...+1/2^(n-1)=-3-5[(1/2)(1-(1/2)^(n-1))]/[1-1/2)]=5/2^(n-1)]-8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为Sn=n^2-4n,Sn+1=(n+1)^2-4(n+1),两式相减,可得a(n+1)=2n-3,所以an=2n-5
bn=an/2^n=(2n-5)/2^n
Tn=-3/2-1/2^2+1/2^3+3/2^4+....+(2n-5)/2^n
2Tn=-3-1/2+1/2^2+3/2^3+....+(2n-5)/2^(n-1)
2Tn-Tn=-3+2(1/2+1/2^2+1/2^3+...+1/2^(n-1))-(2n-5)/2^n
Tn=-3+2*1/2*(1-1/2^(n-1))/(1-1/2)-(2n-5)/2^n
=-3+2-4/2^n-(2n-5)/2^n
=-1-(2n-1)/2^n
bn=an/2^n=(2n-5)/2^n
Tn=-3/2-1/2^2+1/2^3+3/2^4+....+(2n-5)/2^n
2Tn=-3-1/2+1/2^2+3/2^3+....+(2n-5)/2^(n-1)
2Tn-Tn=-3+2(1/2+1/2^2+1/2^3+...+1/2^(n-1))-(2n-5)/2^n
Tn=-3+2*1/2*(1-1/2^(n-1))/(1-1/2)-(2n-5)/2^n
=-3+2-4/2^n-(2n-5)/2^n
=-1-(2n-1)/2^n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询