已知函数f(x)=-sin^2x+2asinx+5。 1.若x属于R,有1小于等于f(x)小于等于8,求a的取值范围。 ... 20
已知函数f(x)=-sin^2x+2asinx+5。1.若x属于R,有1小于等于f(x)小于等于8,求a的取值范围。2.当f(x)=0有实数解时,求a的取值范围。为什么现...
已知函数f(x)=-sin^2x+2asinx+5。 1.若x属于R,有1小于等于f(x)小于等于8,求a的取值范围。 2.当f(x)=0有实数解时,求a的取值范围。
为什么现在还没回答 展开
为什么现在还没回答 展开
展开全部
f(x)=-sin²x+2asinx+5
令t=sinx∈[-1,1],则
f(x)=-t²+2at+5=-(t-a)²+5+a²=g(t),
g(t)图像为一开口向下的抛物线,定义域为t∈[-1,1]
对称轴为t=a,最大值为5+a²
(1)在x∈R上,如有1≤f(x)≤8,即1≤g(t)≤8,则
若-1≤a≤1,则最大值为5+a²≤8,
解得-√3≤a≤√3,与假设取交集得 -1≤a≤1
若a≥1,则g(t)在[-1,1]上为单调递增函数
最小值为g(-1)=-1-2a+5≥1,最大值为g(1)=-1+2a+5≤8
解得 a≤3/2, 且a≤2,与假设取交集得 1≤a≤3/2
若a≤-1,则g(t)在[-1,1]上为单调递减函数
最小值为g(1)=-1+2a+5≥1,最大值为g(-1)=-1-2a+5≤8
解得 a≥-3/2,且a≥-2,与假设取交集得 -3/2≤a≤-1
综上所述,若值域为[1,8],则a取值范围为 [-3/2,3/2]
(2)f(x)=0有实数解,即-(t-a)²+5+a²=0在[-1,1]上有解
解得 t1=a-√(5+a²),t2=a+√(5+a²)
则有 -1≤a-√(5+a²)≤1,或 -1≤a+√(5+a²)≤1
解上述不等式可得 -2≤a≤2,或a≤-2
取交集即得a的取值范围为 a≤2
令t=sinx∈[-1,1],则
f(x)=-t²+2at+5=-(t-a)²+5+a²=g(t),
g(t)图像为一开口向下的抛物线,定义域为t∈[-1,1]
对称轴为t=a,最大值为5+a²
(1)在x∈R上,如有1≤f(x)≤8,即1≤g(t)≤8,则
若-1≤a≤1,则最大值为5+a²≤8,
解得-√3≤a≤√3,与假设取交集得 -1≤a≤1
若a≥1,则g(t)在[-1,1]上为单调递增函数
最小值为g(-1)=-1-2a+5≥1,最大值为g(1)=-1+2a+5≤8
解得 a≤3/2, 且a≤2,与假设取交集得 1≤a≤3/2
若a≤-1,则g(t)在[-1,1]上为单调递减函数
最小值为g(1)=-1+2a+5≥1,最大值为g(-1)=-1-2a+5≤8
解得 a≥-3/2,且a≥-2,与假设取交集得 -3/2≤a≤-1
综上所述,若值域为[1,8],则a取值范围为 [-3/2,3/2]
(2)f(x)=0有实数解,即-(t-a)²+5+a²=0在[-1,1]上有解
解得 t1=a-√(5+a²),t2=a+√(5+a²)
则有 -1≤a-√(5+a²)≤1,或 -1≤a+√(5+a²)≤1
解上述不等式可得 -2≤a≤2,或a≤-2
取交集即得a的取值范围为 a≤2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询