
请问 1/(sinx)^2 -(cosx)^2/x^2 x趋近于0 的极限为什么等于4/3?
1个回答
展开全部
先通分,再因式分解与等价无穷小替换,最后用洛必达法则。
原式=lim [x^2-(sinxcosx)^2)]/(xsinx)^2
=lim (x+sinxcosx)(x-sinxcosx)/x^4
=lim (x+sinxcosx)/x×(x-sinxcosx)/x^3
=lim (1+sinx/x×cosx)/x × lim (x-sinxcosx)/x^3
=2×lim (x-sinxcosx)/x^3
=2×lim (1-cos2x)/(3x^2)
=2×lim (2sin2x)/(6x)
=2×2×2/6=4/3
原式=lim [x^2-(sinxcosx)^2)]/(xsinx)^2
=lim (x+sinxcosx)(x-sinxcosx)/x^4
=lim (x+sinxcosx)/x×(x-sinxcosx)/x^3
=lim (1+sinx/x×cosx)/x × lim (x-sinxcosx)/x^3
=2×lim (x-sinxcosx)/x^3
=2×lim (1-cos2x)/(3x^2)
=2×lim (2sin2x)/(6x)
=2×2×2/6=4/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询