4个回答
展开全部
已知sin(x-3π/4)cos(x-π/4)=-1/4,求cos4x的值
解:因为sin(x-3π/4)=sin[x-(π-π/4)]=sin[-π+(x-π/4)]=sin{-[π-(x-π/4)]}=-sin[π-(x-π/4)]=-sin(x-π/4),
故原式可化为 -sin(x-π/4)cos(x-π/4)=-1/4;
即有sin(x-π/4)cos(x-π/4)=1/4;
于是得(1/2)sin[2(x-π/4)]=(1/2)sin(2x-π/2)=(1/2)sin[-(π/2-2x)]= -(1/2)sin(π/2-2x)= -(1/2)cos2x=1/4
故得cos2x= -1/2;cos4x=2cos²2x -1=2(1/4) -1=1/2-1= -1/2
解:因为sin(x-3π/4)=sin[x-(π-π/4)]=sin[-π+(x-π/4)]=sin{-[π-(x-π/4)]}=-sin[π-(x-π/4)]=-sin(x-π/4),
故原式可化为 -sin(x-π/4)cos(x-π/4)=-1/4;
即有sin(x-π/4)cos(x-π/4)=1/4;
于是得(1/2)sin[2(x-π/4)]=(1/2)sin(2x-π/2)=(1/2)sin[-(π/2-2x)]= -(1/2)sin(π/2-2x)= -(1/2)cos2x=1/4
故得cos2x= -1/2;cos4x=2cos²2x -1=2(1/4) -1=1/2-1= -1/2
展开全部
sin(x-3π/4)cos(x-π/4)=-1/4
sin(x-π/4)cos(x-π/4)=-1/4
2sin(x-π/4)cos(x-π/4)=-1/2
sin[2(x-π/4)]=-1/2
sin(2x-π/2)=-1/2
-sin(π/2-2x)=-1/2
sin(π/2-2x)=1/2
cos2x=1/2
则:
cos4x=2cos²2x-1=-1/2
sin(x-π/4)cos(x-π/4)=-1/4
2sin(x-π/4)cos(x-π/4)=-1/2
sin[2(x-π/4)]=-1/2
sin(2x-π/2)=-1/2
-sin(π/2-2x)=-1/2
sin(π/2-2x)=1/2
cos2x=1/2
则:
cos4x=2cos²2x-1=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(x-3π/4)cos(x-π/4)=sin(π-(-x+π/4))cos(π-(-x+π/4))=sin(-x+π/4)cos(-x+π/4)
=1/2sin(-2x+π/2)=-1/2cos2x=-1/4
cos2x=1/2
cos4x=2cos²2x-1=1/2-1=-1/2
=1/2sin(-2x+π/2)=-1/2cos2x=-1/4
cos2x=1/2
cos4x=2cos²2x-1=1/2-1=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-30
展开全部
f(x)=2(sinx)^4 2(cosx)^4 (cos2x)^2-3
=2*((1-cos2x)/2)^2 2*((1 cos2x)/2)^2 (cos2x)^2-3
=(1-cos2x)^2/2 (1 cos2x)^2/2 (cos2x)^2-3
=(cos2x)^2 (cos2x)^2-3
=2(cos2x)^2-3
=2(1 cos4x)/2-3
=cos4x-2
周期=π/2
π/16=〈X〈=3π/16,π/4=〈4X〈=3π/4
-2/2=〈cos4x〈=√2/2
则最小值是√2/2-2
=2*((1-cos2x)/2)^2 2*((1 cos2x)/2)^2 (cos2x)^2-3
=(1-cos2x)^2/2 (1 cos2x)^2/2 (cos2x)^2-3
=(cos2x)^2 (cos2x)^2-3
=2(cos2x)^2-3
=2(1 cos4x)/2-3
=cos4x-2
周期=π/2
π/16=〈X〈=3π/16,π/4=〈4X〈=3π/4
-2/2=〈cos4x〈=√2/2
则最小值是√2/2-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询